作者单位
摘要
1 1.山东大学 晶体材料国家重点实验室, 新一代半导体材料研究院, 济南250100
2 2.中国科学院 深圳先进技术研究院, 多尺度晶体材料研究中心, 深圳 518055
Er3+和Yb3+共掺杂的YAG晶体是一种非常重要的光学晶体, 目前, 该晶体已经广泛应用于高功率固体激光器, 但是采用提拉法生长大尺寸、低缺陷的掺杂YAG晶体仍然面临很多挑战。本工作采用快速提拉法成功获得了直径为80 mm、长度为230 mm的Er3+和Yb3+共掺杂的YAG单晶。采用不同测试方法评价其结构、掺杂浓度、光吸收、发光性能和刻蚀缺陷。晶片不同位置的拉曼峰峰位以及半峰宽没有明显变化, 说明晶片中心和边缘部分的晶体结构和应变是均匀的。刻蚀结果表明, 腐蚀坑均匀分布在整个腐蚀表面上, 没有观察到位错腐蚀坑特征, 这意味着晶体接近完美。Er3+和Yb3+在不同波长下的强发光峰以及辉光放电质谱结果证明Er,Yb:YAG单晶中成功掺杂了稀土离子。本工作采用提拉法成功生长了大尺寸、低缺陷的Er,Yb:YAG单晶, 证实了快速生长方法对YAG晶体中掺杂双稀土离子是有效的。
YAG单晶 稀土掺杂 快速提拉法 发光性能 YAG single crystal rare earth doping fast Cz growth method luminescence property 
无机材料学报
2023, 38(3): 329
作者单位
摘要
1 1.山东大学 新一代半导体材料研究院 晶体材料国家重点实验室, 济南 250100
2 2.中国科学院 深圳先进技术研究院, 多尺度晶体材料研究中心, 深圳 518055
大尺寸晶体材料是半导体、激光、通讯等领域的基础原料, 大尺寸、高品质晶体材料的制备已成为制约相关行业发展的瓶颈。我国面临的“卡脖子”技术中大多与关键基础材料相关。大尺寸晶体材料制备理论与技术是我国新材料产业高质量发展的一个重要方面, 也是提升相应高技术产业的基础, 突破大尺寸晶体材料的制备理论和技术是获得高品质大尺寸晶体材料的关键。探究并准确理解大尺寸晶体生长机理需要借助原位表征技术和多尺度计算模拟方法。单一的原位表征和模拟技术只能探究特定时间和空间范围内的结晶信息, 为了准确反映结晶过程需要综合应用多种方法。本文综述了最新的多尺度晶体生长研究的原位表征方法、多尺度计算模拟技术以及机器学习方法, 为发展结晶理论和控制晶体品质提供重要的实验和理论依据, 并将为提升大尺寸晶体生长工艺的开发而服务。
晶体生长 多尺度结晶 振动光谱 原位观测 多尺度模拟计算 综述 crystal growth multi-scale crystallization vibration spectra in situ characterization multi-scale simulations review 
无机材料学报
2023, 38(3): 256
作者单位
摘要
1 中国科学院深圳先进技术研究院多尺度晶体材料研究中心,广东 深圳 518055
2 山东大学,晶体材料国家重点实验室新一代半导体材料研究院,济南 250100
3 山东大学,晶体材料国家重点实验室,济南 250100
铌酸锂晶体中存在着丰富的缺陷结构,主要包括VLi、NbLi4+、VNb以及VO等点缺陷。缺陷的存在会在很大程度上影响铌酸锂晶体的性质,如压电、电光、铁电、光折变、非线性光学性质以及激光损伤阈值,进而影响声表面波、电光调制器、声光调制器、温度/压力/加速度传感器等器件性能。铌酸锂晶体中缺陷形成的主要过程可以归结为以O2-为中心的介尺度团簇演变。明确铌酸锂晶体缺陷形成过程中的介尺度团簇演变机制对于缺陷的控制具有十分重要的意义。本文将从缺陷类型、形成能以及介尺度团簇模型研究铌酸锂晶体中缺陷的动态演变过程以及形成机制。最后分析铌酸锂晶体结构中缺陷导致的杂化、再杂化过程,同时考虑多种自由度的耦合,为铌酸锂晶体的缺陷控制、快速生长以及性能调控贡献力量。最后举例介绍分析铌酸锂晶体缺陷与性质、功能的关联关系。
铌酸锂 缺陷 团簇 介尺度 动态演变 lithium niobate defects clusters mesoscale dynamic evolution 
硅酸盐学报
2023, 51(6): 1425
作者单位
摘要
1 中国科学院深圳先进技术研究院多尺度晶体材料研究中心, 广东 深圳 518055
2 山东大学新一代半导体材料研究院晶体材料国家重点实验室, 济南 250100
大尺寸功能晶体氧化物广泛应用于**、高端制造、医疗等领域。熔体的结构和性质对于生长大尺寸高质量的功能晶体而言十分关键。本文综述了氧化铝、钇铝石榴石、铌酸锂等典型氧化物晶体的熔体结构特征。研究表明这几种熔体中都存在几种由金属阳离子与氧离子配位形成的不同多面体结构基元, 这些结构基元的配位数、键长、空间结构以及各种基元数量的相对占比与晶体中的存在显著差异, 并且结构基元的种类和占比与温度具有一定关联关系。在熔体中, 这些结构基元相互连接形成网状结构, 阴阳离子都可以作为节点在熔体中连接结构基元多面体。相变和熔体结构动态转变反映了晶体生长的热力学和动力学过程, 揭示结构相变和熔体的结构演变动力学过程将有助于从深层次理解大尺寸晶体的实际生长机理。在生长界面处诱导形成特定熔体结构基元, 构筑长程、均一的介尺度化学键合结构, 有助于实现高品质大尺寸晶体生长。
熔体结构 结构基元 网络结构 大尺寸 氧化物晶体 structure of melt dynamic coordination unit network large-size oxide crystal 
硅酸盐学报
2023, 51(2): 332
作者单位
摘要
1 中国科学院深圳先进技术研究院多尺度晶体材料研究中心, 深圳 518055
2 山东大学新一代半导体材料研究院晶体材料国家重点实验室, 济南 250100
“如何突破大尺寸晶体材料的制备理论和技术”是中国科协发布的2021年度的十大前沿科学问题之一, 揭示晶体生长机制和突破生长关键技术是大尺寸功能晶体发展的两个趋势。在原子分子尺度上, 晶体生长可以是有势垒的热激活过程, 也可以是无势垒的超快结晶过程, 这与具体的体系以及晶面有关。从界面属性角度来看, 光滑界面是以台阶拓展的方式生长; 粗糙界面没有明显的固-液分层, 通过局部原子固化进行生长。本文从晶体生长理论模型、生长技术及其应用实例, 以及分子动力学方法在晶体生长中的应用等方面探讨了近些年大尺寸晶体快速生长理论和技术的研究进展。目前有多种方法制备大尺寸晶体, 但普遍存在制备的晶体质量差和性能不稳定等问题。需要突破对晶体生长微观机制上的认识, 建立机制与温度、流速等外界因素的内在联系。而利用机器学习力场以及分子动力学模拟方法, 建立固-液界面, 模拟晶体生长, 将是探究晶体生长微观机制的一种有效方式。
大尺寸晶体 人工晶体 晶体生长模型 生长理论 固-液界面 large-size crystal synthetic crystal crystal growth model theory of growth solid-liquid interface 
人工晶体学报
2022, 51(9-10): 1732
作者单位
摘要
1 华东师范大学精密光谱科学与技术国家重点实验室,上海 200062
2 山西大学极端光学协同创新中心,山西 太原 030006
3 中国电子科技集团公司第四十一研究所电子测试科学技术实验室,山东 青岛 266000
提出了一种可编程的激光脉冲选取和幅度控制的方法,以产生具有任意时域波形的脉冲串模式激光。采用具有灵活的可编程性的基于现场可编程门阵列结构的脉冲选择单元驱动声光调制器,实现对脉冲串内每个激光脉冲能量的精确控制。基于该创新的脉冲时域特性调控技术,利用掺镱啁啾脉冲光纤放大系统,实现了不同时域波形的高能量激光脉冲串,脉冲串能量为20 μJ,脉冲串间重复率为1 MHz,脉冲串内单脉冲宽度小于300 fs。
激光光学 超快激光器 光纤激光 脉冲整形 
激光与光电子学进展
2021, 58(23): 2314001
Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200062, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan030006, China
3 Science and Technology on Electronic Test & Measurement Laboratory, The 41st Research Institute of CETC, Qingdao266000, China
We report on the generation of a mid-infrared (mid-IR) frequency comb with a maximum average output power of 250 mW and tunability in the 2.7–4.0 μm region. The approach is based on a single-stage difference frequency generation (DFG) starting from a compact Yb-doped fiber laser system. The repetition rate of the near-infrared (NIR) comb is locked at 75 MHz. The phase noise of the repetition rate in the offset-free mid-IR comb system is measured and analyzed. Except for the intrinsic of NIR comb, environmental noise at low frequency and quantum noise at high frequency from the amplifier chain and nonlinear spectral broadening are the main noise sources of broadening the linewidth of comb teeth, which limits the precision of mid-IR dual-comb spectroscopy.
fiber laser mid-infrared optical frequency comb 
High Power Laser Science and Engineering
2020, 8(4): 04000e32
赵坤 1,*史学舜 1,2刘长明 1刘玉龙 1[ ... ]李立功 1,2
作者单位
摘要
1 中国电子科技集团公司第四十一研究所, 山东 青岛 266555
2 电子测试技术国防科技重点实验室, 山东 青岛 266555
为了实现中红外探测器绝对光谱响应度高准确度的测量, 从理论和实验上研究了中红外波段激光的功率稳定性的提高和光束质量的优化方法。采用声光调制和反馈控制的方法, 把中红外激光的功率稳定性提高到0.1%以内; 根据高斯光束传输理论计算了所需空间滤波器的各项参数, 设计了中红外空间滤波器, 搭建了相应的实验装置, 显著提高了中红外激光光束质量。为中红外绝对光谱响应度的高准确度测量提供了一个可靠的中红外波段激光光源。
中红外 绝对光谱响应度 光束质量 功率稳定性 mid-infrared absolute spectral responsivity beam quality power stability 
红外与激光工程
2016, 45(7): 0705005
作者单位
摘要
1 中国电子科技集团公司第四十一研究所,山东 青岛 266555
2 电子测试技术重点实验室,山东 青岛 266555
空间激光通信终端通常依靠光学天线提高整个通信系统的发射及接收效率。提出了一种空间激光通信系统的离轴天线系统,以克服传统卡塞格林两镜系统存在接收视场小、发射效率低等缺点。设计了一个通光孔径为150 mm,放大倍率为15×,满足0.85、1.064、1.55 μm多个通信波段光学天线系统。计算了初始结构参数,利用光学设计软件ZEMAX-EE对该光学天线系统进行了光线追迹和优化设计,并对设计结果进行分析。分析结果表明:在整个工作波段(0.85、1.064、1.55 μm)内,点列图半径几何值小于10 μrad,实现了高放大倍率、宽波段像散同时校正,在宽波段内均达到衍射极限,满足设计指标要求,能够满足高性能空间激光通信系统的要求。
空间激光通信 离轴天线 光学设计 像差 space optical communications off-axis optical antenna optical design aberrations 
红外与激光工程
2015, 44(8): 2501
作者单位
摘要
中国电子科技集团公司第四十一研究所,山东 青岛 266555
针对中红外光电探测器光谱响应度精确测量时,要求提高中红外激光器功率稳定度这一问题。提出了一种对中红外激光器功率进行稳幅的方法,基于声光调制器布拉格衍射原理、采用光反馈闭环控制技术实现了对中红外激器光功率的稳定控制。详细介绍了该方案的光路设计、控制电路原理及控制算法,在此基础上研制了一种中红外激光功率稳定器。采用该功率稳定器对3.39 μm He-Ne激光器的输出光进行了稳幅实验。结果表明,该装置可将中红外激光器输出功率稳定度从8%提高到0.4%。可很好地满足中红外探测器光谱响应度测试的需要。
激光功率稳定器 光谱响应度 中红外激光器 声光调制器 布拉格衍射 红外探测器 laser power stabilizer spectral responsivity mid infrared laser acousto-optic modulator Bragg diffraction infrared detector 
红外与激光工程
2015, 44(7): 2127

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!